# 电动汽车电池波浪通道液体冷却系统的热性能

## 作者

Julius Ezra M. Gundran

Mechanical Engineering Department, De La Salle University, Manila, Philippines

Aristotle T. Ubando

Mechanical Engineering Department, De La Salle University, Manila, Philippines

Alvin B. Culaba

Mechanical Engineering Department, De La Salle University, Manila, Philippines

## 2. 理论

### A. 电池发热

$\Phi = I\left( {{E_{OC}}-E} \right)-I{T_{bat}}\left( {d{E_{OC}}/d{T_{bat}}} \right) \hskip2em (1)$

(1)式中，$$\Phi$$为电池的总发热量。$$I$$是电池电流，$$E_{OC}$$是开路电压，$$E$$是电压，$$T_{bat}$$是温度。

### B. 计算流体动力学

CFD 提供系统中流体流动、传热和其他现象的详细预测[18]，其工作量和成本低于实验[21]。它通过在有限的控制体积集上求解守恒方程来实现这一点，CFD 求解器将构成系统的固体和流体域划分为这些体积。质量、动量和能量守恒方程分别由(2)、(3)和(4)给出，如[18]中所示。

$\begin{gather*} \frac{{\partial p}}{{\partial t}} + \nabla \cdot(pu) = 0\tag{2} \\ \frac{\partial }{{\partial t}}(\rho u) + \nabla \cdot(\rho uu) = - \nabla P + \nabla \cdot(\mu \nabla u)\tag{3} \\ \frac{\partial }{{\partial t}}\left( {\rho {c_p}T} \right) + \nabla \cdot\left( {\rho {c_p}uT} \right) = \nabla \cdot(k\nabla T) + Q + {S_{{Q_1}}} + {S_{{Q_2}}}\tag{4}\end{gather*}$

## 致谢

Gundran 先生感谢科学技术部 (DOST) 下属的技术工程研究与开发 (ERDT) 财团的支持，该财团为他提供了奖学金和研究补助金。

## 参考文献

1. T. F. Stocker et al., "Technical Summary", 2013.
2. "Energy and Climate Change", 2015.
3. "Explaining road transport emissions", 2016.
4. Q. Wang, B. Jiang, B. Li and Y. Yan, "A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles", Renew. Sustain. Energy Rev., vol. 64, pp. 106-128, 2016.
5. G. Xia, L. Cao and G. Bi, "A review on battery thermal management in electric vehicle application", J. Power Sources, vol. 367, pp. 90-105, 2017.
6. L. Su et al., "Identifying main factors of capacity fading in lithium ion cells using orthogonal design of experiments", Appl. Energy, vol. 163, pp. 201-210, 2016.
7. R. Zhao, S. Zhang, J. Liu and J. Gu, "A review of thermal performance improving methods of lithium ion battery: Electrode modification and thermal management system", J. Power Sources, vol. 299, pp. 557-577, 2015.
8. H. Liu, Z. Wei, W. He and J. Zhao, "Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review", Energy Convers. Manag., vol. 150, pp. 304-330, May 2017.
9. Z. Rao and S. Wang, "A review of power battery thermal energy management", Renew. Sustain. Energy Rev., vol. 15, no. 9, pp. 4554-4571, 2011.
10. S. Hong, X. Zhang, K. Chen and S. Wang, "Design of flow configuration for parallel air-cooled battery thermal management system with secondary vent", Int. J. Heat Mass Transf., vol. 116, pp. 1204-1212, 2018.
11. X. Na, H. Kang, T. Wang and Y. Wang, "Reverse layered air flow for Li-ion battery thermal management", Appl. Therm. Eng., vol. 143, pp. 257-262, July 2018.
12. T. Deng, G. Zhang and Y. Ran, "Study on thermal management of rectangular Li-ion battery with serpentine-channel cold plate", Int. J. Heat Mass Transf., vol. 125, pp. 143-152, 2018.
13. J. Qu, C. Wang, X. Li and H. Wang, "Heat transfer performance of flexible oscillating heat pipes for electric/hybrid-electric vehicle battery thermal management", Appl. Therm. Eng., vol. 135, pp. 1-9, January 2018.
14. B. Mondal, C. F. Lopez and P. P. Mukherjee, "Exploring the efficacy of nanofluids for lithium-ion battery thermal management", Int. J. Heat Mass Transf., vol. 112, pp. 779-794, 2017.
15. Y. Lv, W. Situ, X. Yang, G. Zhang and Z. Wang, "A novel nanosilica-enhanced phase change material with anti-leakage and anti-volume-changes properties for battery thermal management", Energy Convers. Manag., vol. 163, pp. 250-259, January 2018.
16. W. Wu et al., "An experimental study of thermal management system using copper mesh-enhanced composite phase change materials for power battery pack", Energy, vol. 113, pp. 909-916, 2016.
17. G. Jiang, J. Huang, Y. Fu, M. Cao and M. Liu, "Thermal optimization of composite phase change material/expanded graphite for Li-ion battery thermal management", Appl. Therm. Eng., vol. 108, pp. 1119-1125, 2016.
18. C. Zhao, W. Cao, T. Dong and F. Jiang, "Thermal behavior study of discharging/charging cylindrical lithium-ion battery module cooled by channeled liquid flow", Int. J. Heat Mass Transf., vol. 120, pp. 751-762, 2018.
19. P. T. Tennessen, J. C. Weintraub and W. A. Hermann, "Extruded and Ribbed Thermal Interface for Use with a Battery Cooling System", 2011.
20. D. Worwood et al., "A new approach to the internal thermal management of cylindrical battery cells for automotive applications", J. Power Sources, vol. 346, pp. 151-166, 2017.
21. "Lecture 03: Overview of the CFD Process and CFX Workflow", 2016.
22. "Features of ANSYS CFX", 2018.
23. "Lithium Ion Rechargeable Battery Technical Information", pp. 1-9, June 2012.
24. H. Maleki, S. Al Hallaj, J. R. Selman, R. B. Dinwiddie and H. Wang, "Thermal Properties of Lithium-Ion Battery and Components", J. Electrochem. Soc., vol. 146, no. 3, pp. 947, 1999.
25. L. H. Saw et al., "Novel thermal management system using mist cooling for lithium-ion battery packs", Appl. Energy, vol. 223, pp. 146-158, April 2018.